

Muriel Dunn¹, Len Zedel¹ and Greg Trowse²

Using Doppler sonar to evaluate fish populations in high-energy tidal channels:

Can Doppler sonar be used to count fish?

What's the problem?

- Interactions and effect on fish by tidal turbines are a concern
- Most research based on conventional hydroacoustic sampling (Typically involves ship/boat surveys and significant user interaction)

Question

- Could Doppler sonar (ADCPs), normally used to measure water velocity, contribute information?
- Fish are detected by Doppler sonar and are known to corrupt the velocity signals
- BUT, you can actually measure fish velocities with
- Can ADCP fish counts be quantified?

Deployment Site: Grand Passage NS

Two Deployments

- September 2018: 11-days
- September-December 2014: ~90 days

- Flow speed 2-4 m/s
- Tidal range ~ 5 m
- Water depth 25 m

Equipment

- T-RDI ADCP Doppler sonar
- Biosonics DTX split beam sonar
- Self-contained, bottom-mounted frame

Parameter	ADCP	Split-beam
Frequency	600 kHz	120 kHz
Duty Cycle	20 mins on/20 mins off	20 mins on/ 40 mins off
Ping rate	1 pps	4 pps
Pulse length	o.o8 ms	0.1 ms

Split-beam Echosounder

Industry standard for fish detection

Nice image, fish visible for humans

(~3 minutes of data shown)

(Display from SONAR-5)

Fish detection with ADCP

- Broadband Acoustic Monitoring for Fish (BAMFF) toolbox
- 8 minutes of data
- Intensity and correlation thresholds
- Validates approach for detecting fish

Correlation

Pulse pair convolved with discrete target

Autocorrelation of return signal with lag

Fish detection with ADCP

- Broadband Acoustic Monitoring for Fish (BAMFF) toolbox
- Intensity and correlation thresholds
- Validates approach for detecting fish

(For T-RDI ADCP, correlation of 128 is normal)

Split-beam

Dealing with bubble clutter

Fish counts comparison

- Fish detectability
- Fish schools
- 11 days data
- 2 m depth bins
- 2 hour time bins

Fish detection comparison

Slope 6.8 ± 0.3 R= 0.8

Slope 1.0 ± 0.3 R=0.8

Three Month ADCP deployment in Grand Passage

Daily fish counts
m bins

(Data kindly provided by Dr. Alex Hay, Dalhousie University)

Conclusions

- Doppler sonar (ADCP) can be used to detect fish in tidal channels. Use of signal correlation helps to detect fish while excluding false detections from bubbles.
- 2. Fish counts from ADCP data agree very well with split beam sonar results (correlation ADCP-Splitbeam =~0.8)

Acknowledgements **OERA** Offshore Energy Research Association

"Fish!"

As seen by upward looking camera during June 2019 deployment

1. Quote from Greg Trowse email, July 2019